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What we want (SHOP to do)

• We want …
• SHOP to run in a way that will facilitate 

increased automation of the production 
planning (and re-planning) processes

• Project to test SHOP in the cloud

Source

• We need …
• Fresh results available at all times
• Automatic detection and fixing of (potential) errors in inputs and 

results, and metering of result quality
• To run multiple scenarios for each model, both for inputs, and 

permutations of running units
• To run in an environment where the number of parallel 

optimizations doesn’t effect calculation time
• Easy access to results and process status
• Manually trigger and adjusting model runs
• A robust test environment, and continuous deployments



Running SHOP in Microsoft 
Azure

• Finished a pilot project to test feasibility of running SHOP 
in the cloud Autumn 2018

• Foreseen benefits of the cloud were mostly confirmed
• On-demand computing power and storage
• Parallelization without impacting calculation time
• Potentially easy testing and deployment
• No/limited on-premise infrastructure, and easy monitoring of 

infrastructure costs

• Started by running PyShop on a virtual server in Azure
 (extremely) easy, but no benefits 

• Need to use cloud specific services

Source
Source: https://azure.microsoft.com/en-
us/overview/what-is-azure/



Running SHOP in Microsoft 
Azure

• Cloud specific services include serverless and stateless
functions, databases and container services

• Cloud services lend themselves to easy partitioning of 
functionality
• Function apps for starting/stopping/moving etc.
• Repository for code
• Serverless storage
• Webapps for user interface
• Container instances for calculations

Source



Running SHOP in Microsoft 
Azure

• Containers are one of two key components
• Mini virtual servers created from pre-defined images
• Each started for a single SHOP optimization, then killed
• Parallelization is just a matter of starting multiple container 

instances

• Took some time to make it work
• We were initially unaware of SHOP and PyShop dependencies 

not available in the standard Windows images
• Installing dependencies massively inflated the size of the 

docker images
• Start-up time of minutes for a calculation time of 30 seconds
• Good help from Sintef in reducing size of images, new 

dependencies mostly solve the size problem
• A Linux version of SHOP would further speed up the system

Source



Running SHOP in Microsoft 
Azure

• Services loosely connected by APIs
• Also accessible from on-premise PCs using Azure APIs
• API payloads as JSON

• Storage of all data from each optimization
• All results, all logs, all inputs, full model description
• Possible to recreate any results if errors detected

• Possible to duplicate entire set-up for testing purposes

Source



PyShop and challenges

• PyShop was the second key component
• Not practical to run SHOP in docker without PyShop
• PyShop makes it easy to instantly verify the integrity of the 

results, change the inputs, rerun the models… 
• We used cmd and ascii files, with additional set-up in PyShop

• Main challenges with running SHOP in the cloud was 
integration with existing legacy/on-premise systems

Source
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