
SHOP: Microsoft interface

Nils Flaten Ræder

Hell, 2019-03-13



What we want (SHOP to do)

• We want …
• SHOP to run in a way that will facilitate 

increased automation of the production 
planning (and re-planning) processes

• Project to test SHOP in the cloud

Source

• We need …
• Fresh results available at all times
• Automatic detection and fixing of (potential) errors in inputs and 

results, and metering of result quality
• To run multiple scenarios for each model, both for inputs, and 

permutations of running units
• To run in an environment where the number of parallel 

optimizations doesn’t effect calculation time
• Easy access to results and process status
• Manually trigger and adjusting model runs
• A robust test environment, and continuous deployments



Running SHOP in Microsoft 
Azure

• Finished a pilot project to test feasibility of running SHOP 
in the cloud Autumn 2018

• Foreseen benefits of the cloud were mostly confirmed
• On-demand computing power and storage
• Parallelization without impacting calculation time
• Potentially easy testing and deployment
• No/limited on-premise infrastructure, and easy monitoring of 

infrastructure costs

• Started by running PyShop on a virtual server in Azure
 (extremely) easy, but no benefits 

• Need to use cloud specific services

Source
Source: https://azure.microsoft.com/en-
us/overview/what-is-azure/



Running SHOP in Microsoft 
Azure

• Cloud specific services include serverless and stateless
functions, databases and container services

• Cloud services lend themselves to easy partitioning of 
functionality
• Function apps for starting/stopping/moving etc.
• Repository for code
• Serverless storage
• Webapps for user interface
• Container instances for calculations

Source



Running SHOP in Microsoft 
Azure

• Containers are one of two key components
• Mini virtual servers created from pre-defined images
• Each started for a single SHOP optimization, then killed
• Parallelization is just a matter of starting multiple container 

instances

• Took some time to make it work
• We were initially unaware of SHOP and PyShop dependencies 

not available in the standard Windows images
• Installing dependencies massively inflated the size of the 

docker images
• Start-up time of minutes for a calculation time of 30 seconds
• Good help from Sintef in reducing size of images, new 

dependencies mostly solve the size problem
• A Linux version of SHOP would further speed up the system

Source



Running SHOP in Microsoft 
Azure

• Services loosely connected by APIs
• Also accessible from on-premise PCs using Azure APIs
• API payloads as JSON

• Storage of all data from each optimization
• All results, all logs, all inputs, full model description
• Possible to recreate any results if errors detected

• Possible to duplicate entire set-up for testing purposes

Source



PyShop and challenges

• PyShop was the second key component
• Not practical to run SHOP in docker without PyShop
• PyShop makes it easy to instantly verify the integrity of the 

results, change the inputs, rerun the models… 
• We used cmd and ascii files, with additional set-up in PyShop

• Main challenges with running SHOP in the cloud was 
integration with existing legacy/on-premise systems

Source



8



9


	SHOP: Microsoft interface
	What we want (SHOP to do)
	Running SHOP in Microsoft Azure
	Running SHOP in Microsoft Azure
	Running SHOP in Microsoft Azure
	Running SHOP in Microsoft Azure
	PyShop and challenges
	Slide Number 8
	Slide Number 9

