
Common Framework

David Myklebust – Developer, ngLTM



Common Model Framework

CONFIDENTIAL

• Purpose:
‒ Bring added value by utilizing solutions to 

common use cases across models

• Scope:
‒ Development best practices

‒ Design principles

‒ Libraries



Common framework:
Development best practices

CONFIDENTIAL

• Development cycle:
‒ Source version control (Git)

‒ Code reviews

‒ Test automation and pipelines

• Documentation

• Software supply chain management



Common framework:
Git usage best practices

CONFIDENTIAL

• Git branching strategy
‒ Main branch

‒ Feature branches

‒ Merge requests & code review

‒ Release tags

• Tools of the trade: GitLab
‒ Git

‒ Pipelines and runners

‒ Code review tools

‒ Package repository



Common framework:
Code reviews

CONFIDENTIAL

• Each code change is reviewed by a peer

• Integral to ngLTM project and adapted in other model projects

• Benefits:
‒ Mistakes are caught early; minimizes their impact

‒ Greatly increases code quality

‒ Fosters knowledge sharing and consensus building



Common framework:
Test automation and pipelines

CONFIDENTIAL

• Pipeline tasks:
‒ Build libraries, binaries, packages, documentation

‒ Run tests (unit-, integration-, and system tests)

‒ Code coverage

‒ Static analysis and code formatting («linting»)

‒ Vulnerability scanning

‒ Deployment

• Pipelines are part of the Merge Request process
‒ Protect integrity of main branch: don’t merge if pipeline fails

‒ The main branch must always be in a buildable and usable state



Common framework:
Development cycle

CONFIDENTIAL



Common framework:
Documentation

CONFIDENTIAL

• Tools:
‒ Command line tool to build user guide & API reference (Sphinx)

• Structure:
‒ Combined user guide and API reference: a mix of written and 

generated documentation

‒ Located together with source code

• Methodology:
‒ Input also from source code and generated code

‒ Automation: Pipeline deploys user guide to website

• Documentation should be well maintained and up to date



Common framework:
Package management

CONFIDENTIAL

• Improved control of dependency artifacts
‒ Internal dependencies and third-party dependenies

• Facilitates modularity in solutions
‒ Libraries shared across projects

• Package managers:
‒ Conan: Package management for C/C++

‒ Pip: Package management for Python

• Internal deployment: package server
‒ Used by developer environments and build runners

• Supply chain security: vulnerability scanning



Common framework:
Code generation

CONFIDENTIAL

• Principle:
‒ Single source of truth for data model (json file)

‒ Generation of dependent source code

‒ Utilize generated code as a library

• Benefits:
‒ Reduces complexity of making changes

‒ Leads to greater consistency across code base

• Used in ngLTM; other models may follow



Common framework:
Libraries

CONFIDENTIAL

Shared code between projects:

- From the ngLTM Project:
- ngltm-timeseries C++ library

- LTMIO C++ library

- Quality attributes of shared libraries:
- Provides a generic API

- Importable as build artifacts (Libraries and headers)

- Deployed through package manager

- Uses semantic versioning

- High test coverage



Common framework:
ngltm-timeseries C++ library

CONFIDENTIAL

- Sampling, interpolation and iteration 
of irregular time series data

- Developed in ngLTM as a stand-
alone headers-only C++ library

- Library used by ngLTM and LTM-API

- Out of scope for library:
- Data distribution

- Math



Common framework:
LTMIO C++ library

CONFIDENTIAL

- Common library for reading and writing LTM V10 files

- Developed in ngLTM project, then factored out and 
converted into a stand-alone C++ library

- Development and maintenance done by developers 
across projects within the LTM team

- Many files are supported; more are added as needed



Impact on
Prodrisk API and SHOP

CONFIDENTIAL

• Prodrisk API
‒ Prodrisk API has similar data modeling needs to ngLTM; will benefit from code generation in future.

• SHOP
‒ SHOP has its own implementation details for objects and attributes, but which could also benefit 

from applying code generation principles in future.

‒ Solutions for LP problem building in ngLTM will give insight for improvements to memory allocation 
in SHOP.



sintef.no/75

sintef.no/75

1950 – 2025
Technology for a better society

https://www.sintef.no/75/

	Slide 1
	Slide 2: Common Model Framework
	Slide 3: Common framework: Development best practices
	Slide 4: Common framework: Git usage best practices
	Slide 5: Common framework: Code reviews
	Slide 6: Common framework: Test automation and pipelines
	Slide 7: Common framework: Development cycle
	Slide 8: Common framework: Documentation
	Slide 9: Common framework: Package management
	Slide 10: Common framework: Code generation
	Slide 11: Common framework: Libraries
	Slide 12: Common framework: ngltm-timeseries C++ library
	Slide 13: Common framework: LTMIO C++ library
	Slide 14: Impact on Prodrisk API and SHOP
	Slide 15

