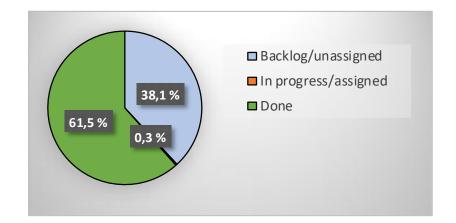

ngLTM Next generation market models

Sintef Energy Research Energy systems

Development of the next generation of market models (ngLTM) has been realised through several stages and user engagement

ngLTM is a development project planned and executed in several phases



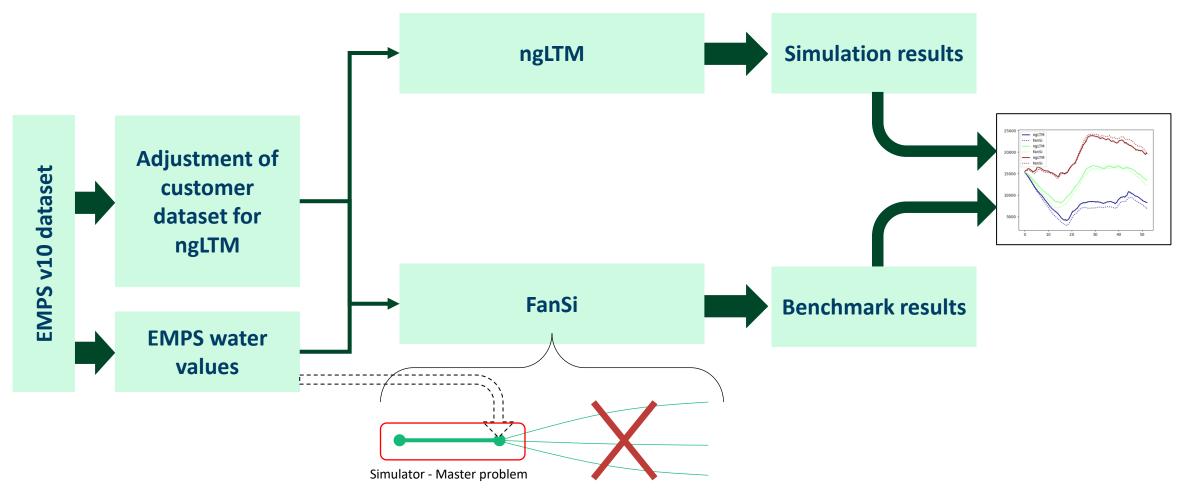
Technology for a better society

Image: SINTEFngLTM v2 – Overall statusSINTEFWeek 18 - 2025

- The development project has good progression without large incidents
- The largest part of functionality in version 2 is implemented and under testing
- We are on the way to provide a new product

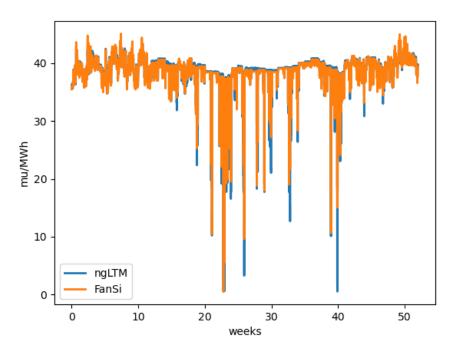
Project			ngLTM v2.0
Status/metric	SP	Hrs	Progress (SP/Capacity)
Total SPs in Project	1 953	7 812	100,0 %
Backlog/unassigned	745	2 980	38,1 %
In progress/assigned	6	24	0,3 %
Done	1 202	4 808	61,5 %
Est. capacity in Project	1 953	7 812	100,0 %

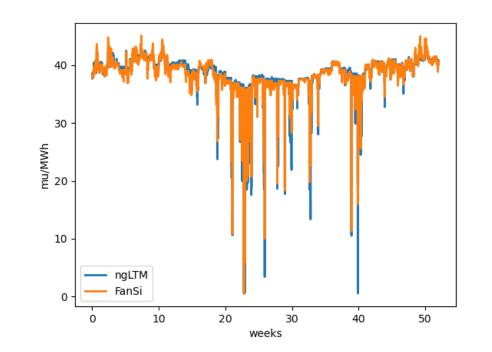
Most of the features are implemented or work in progress


Features - ngLTM v2.0			
Planned Model Features	Mandatory?	Status	
Eksogen lastmodellering med scenario per år	01. Yes	01. Done	
Ramping av kabler	01. Yes	01. Done	
Scenarioavhengig overføringskapasitet	01. Yes	01. Done	
Miljørestriksjoner - tilstandsavhengige restriksjoner	01. Yes	01. Done	
Fallhøydekorrigering	01. Yes	01. Done	
Kraftvarmeverk - Temperaturavhengig	01. Yes	01. Done	
Last inn data til moduler fra .DETD-filer	01. Yes	01. Done	
Dynamisk lasttilpassing og termisk produksjonskapasitet	01. Yes	01. Done	
Parallellprosessering av scenarier i masterproblem (nivå 1)	01. Yes	01. Done	
Flyt-basert modellering	01. Yes	01. Done	
Negative priser	01. Yes	02. WIP	
LP solve time optimization	01. Yes	02. WIP	
Beregning samfunnsøkonomisk overskudd	01. Yes	02. WIP	
Sluttverdisetting basert på siktemagasin	01. Yes	02. WIP	
Reservekrav	01. Yes	09. Backlog	

ngLTM v2 Testing

ngLTM is tested thoroughly on customer datasets with FanSi as a benchmark


SINTEF

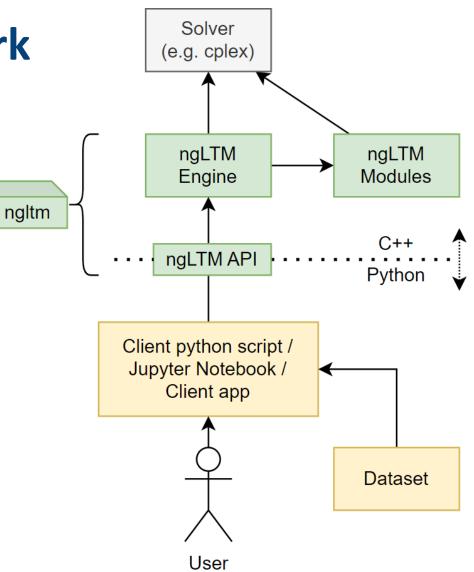

Teknologi for et bedre samfunn

NO 5

NO 1

Technology for a better society

ngLTM v2 Demonstration


The ngLTM model framework

- C++ framework with modularity in mind
- Efficient and fast code for core features
- Loose coupling between features with interfaces
- Domain Specific Language (DSL) for LP problems
- "Future proofing", easy to adapt new tech

- Framework exposed to Python
 - Well known programming language
 - Easy to use

- A year ago the scripts for setting up and running ngLTM could get fairly large.
- Focused work on making the API robust, intuitive and easy to use.
- Moving and storing configurations should also be possible.

```
# Modules
benders module = ngltmextras.EndValueBendersCuts()
emps_module = ngltmextras.EndValueEmpsWaterValue()
lp_objects = ngltmextras.ModuleOptimModel()
relaxation = ngltmextras.ModuleHydroRelaxation()
hydro mod = ngltmextras.HydroModule()
modules = [
   ngltm.core.ModuleThermal.uuid,
   ngltm.core.ModuleExchange.uuid,
    ngltm.core.ModuleTransmission.uuid,
   ngltm.core.ModuleSolar.uuid,
   ngltm.core.ModuleLoad.uuid,
   ngltm.core.ModuleWind.uuid,
   ngltm.core.ModuleMaster.uuid,
   ngltm.core.ModuleProcessing.uuid,
    ngltm.core.ModuleTemperatureCorrection.uuid.
   hydro mod.uuid,
    lp_objects.uuid,
    relaxation.uuid,
   benders_module.uuid,
```

module_config.module_uuid_list = modules

Set up module config module_config = ModuleConfig()

```
module_config.config["use_relative_head"] = False
module_config.config["enable_restroin_relaxation"] = True
module_config.config["relaxation_volume_limit"] = 10.0
module_config.config["enable_ramping_on_cables"] = False
module_config.config["lower_capacity_cutoff"] = 0.00001
module_config.config["validate_watercourse_cycles"] = False
module_config.config["validate_pump_efficiencies"] = False
module_config.config["relationation_email_unregulated_inflows"] = False
module_config.config["cutoff_small_unreg_inflows"] = False
```

module_config.config["small_unregulated_inflow_limit"] = 1.0
module_config.config["average_temperature_years"] = list(range(1981,2011))

Set up the simulation config simulation_config = SimulationConfig() simulation_start = 1893456000 # 2030 week = 604800 hours_per_step = 3 number_of_weeks = 52 day = 24 * 3600 week = day * 7

start_1981 = 347155200000000

```
simulation_config.simulation_start_time = int(simulation_start*1e6)
simulation_config.simulation_end_time = int((simulation_start + number_of_weeks * week) * 1e6)
simulation_config.decision_problem_time_lengths = [int(week * 1e6)]
simulation_config.time_step_lengths = [int(3600*1e6*hours_per_step)]
simulation_config.decision_problem_overlap = int(0)
```

rc = RunConfig("run_nordic")
rc.module_config = module_config
rc.simulation_model_id = "model"
rc.data_set_id = "nordic"
rc.solver = ("cplex")

- Session; a convenient way to set up and run ngLTM.
- Access to all API functions if adjustments are needed.
- Greatly simplified interaction with the model.

```
from ngltm.engine import Session
```

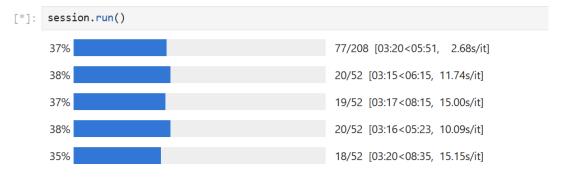
```
session = Session()
```

session.init(use_disk=False,persistent=False, num_local_workers=8)
session.load_run_config("nordic.ngltm_run_config.json")
session.load_logical_model("ngltm_model.json")
session.input_data.load_from_hdf5("ngltm_data.h5")

Ease to use is a focus point for API

- Configurations can be stored as json files.
- Can also be set (and edited) directly through the Python API.

```
"id": "nordic",
"logical model id": "nordic",
"data set id": "nordic",
"solver": {
    "name": "cplex"
},
"simulation_config": {
    "simulation_start_time": "2029-12-31T00:00:00+00:00
    "simulation_end_time": "2030-12-31T00:00:00+00:00",
    "decision problem time lengths": [
        "1w"
    ],
    "time_step_lengths": [
        "3h"
},
"scenarios": [
        "scenario year": 1981,
        "scenario_id": "1981"
],
"parameters": {
    "export_inflow_coefficients": true,
    "export_load_coefficients": true,
    "enable reservoir relaxation": true
},
"modules":
        "name" · "Evchange"
```

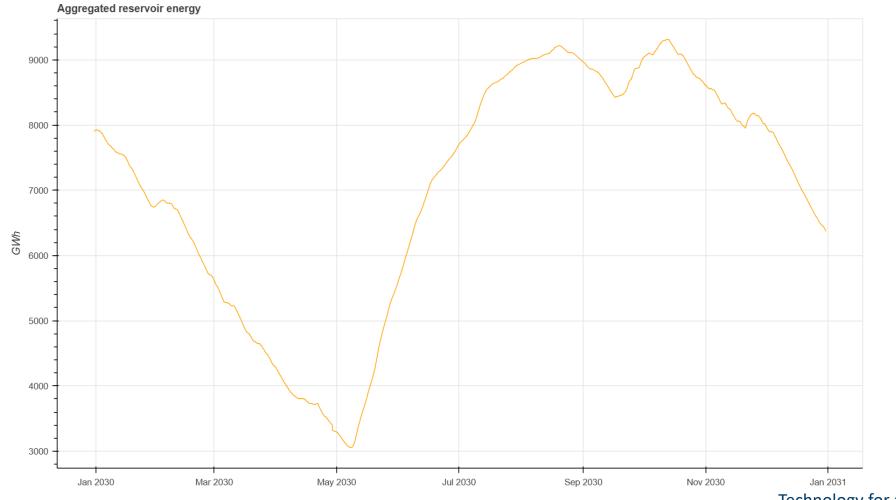


- Conversion tools for converting LTMV10 data sets.
- Converts to a format easily digested by ngLTM.
- Based on loader scripts which can be run with Python.

[loa	-v] [output OUTPUT_PATH] [-f] [-V] [1 d_thermal] [no_load_price_elasticity_fr genous_price_dithering [EXOGENOUS_PRICE_[_path	
Tool for converting a LTMv10 dataset to a ngLTM dataset		
positional arguments: ltmv10_path	path to a LTMv10 dataset	
options:		
-h,help	show this help message and exit	
- V	show program's version number and exit	
output OUTPUT_PATH,	-o OUTPUT_PATH	
	output directory - default: .	
-f,force	overwrite existing files	
-V,verbose	Display more logging info; repeatable (e	
load brensel arch	Load the fuel type archive Assumes the	

- Notebook example: Running ngLTM with session.
- Local parallelization of scenario years with threads
- MPI implementation is also available

Example: displaying results with Bokeh


```
ts = session.result_data.get_time_series("scenario/1981/aggregated_reservoir_energy/a6")
```

ngLTM

```
p.line(ts.t_to_numpy().astype('datetime64[us]'), ts.v_to_numpy(), color=base_color)
```

show(p)

Technology for a better society

ngLTM v2 Pilot model user

1950 – 2025 Technology for a better society