

Negative market prices in LTM models

Birger Mo Chief Scientist SINTEF Energy Research (input from Arild Helseth and David Myklebust)

- The numbers of hours with negative market prices are increasing
 - Increasing share of uncontrolled production
 - Feed in tariffs
- SINTEFs LTM model does not handle negative market prices
 - Market models EMPS, FanSi ..
 - Local planning models; ProdRisk , seasonal models
- Wind power, solar power enters the power balance directly
- Hydro has no production costs
- My presentation
 - Why
 - What have we done to investigate the problem
 - Recommendations

Why negative prices are not allowed in LTM To arrow models

PQ description

- Used in physical description of hydro units (ProdRisk, Seasonal model, FanSi, ngLtm)
- Used to describe detailed hydro properties for aggregated model in EMPS.
- Transmission losses
 - Increased transmission to get rid of surplus power
 - Hydrogen Can use transmission losses to represent a hydrogen market/storage
- Other unknown consequences with many complicated constraints?

Current "handling" of negative prices in LTM models

- EMPS: A dump load with a very small positive price and large enough capacity ensures that calculated market prices always will be positive.
 The model cannot forecast negative prices
- ProdRisk: Negative input market prices will be automatically set to zero

Investment in pumping that benefit from negative prices cannot be correctly evaluated.

Modelling negative prices in a fundamental SINTEF _____75 år _____ market model

With negative prices

SINTEF Methods to handle negative prices in LTM

- None of these methods are perfect
- 1. Shift all input prices to the model upward corresponding to the lowest negative input prices.
 - Shift model results downward. (prices and water values)
 - Easiest to do if all input/output are handled automatically, e.g. using an API
- 2. Allow the model to handle negative prises disregard wrong loading of PQ segments and other "unknown" consequences
 - In some models (Prodrisk, FanSi, ngLTM) simplify model description when prices are/becomes negative.
 - Iterations

EMPS 1. Shift all prices upward

SINTEF

Teknologi for et bedre samfunn

- 4 area test dataset
 - Serial simulation
 - 56 time periods within the week
- Case
 - Reference (R)
 - Reference with all prices shifted upward with +10 (R10)
 - Reference with all prices shifted upward with and run with a modified version of Vansim (R10V)
 - Prices if overflow is hard coded to 0.0 in standard version, should be 10 in shifted version.
- Results
 - Production /reservoirs operation
 - Water values
 - Simulated market prices after shifting back.

Percentiles for reservoir Hovatn (Otra)

- Shifting prices upward seems to work
 - Should include a minor change in the water value calculations
- Simplifications
 - All uncontrolled production (wind, solar and hydro) goes directly to the power balance
 - Does not solve the real problem
- Improved solution –needs implementation
 - Possible to model thatat wind and solar (and hydro) has a production cost
 - Increased number variables and increased computation time

ngLTM 1. Shift all prices upward

SINTEF

Teknologi for et bedre samfunn

Comparing prices ngLTM – price shift +100

- ngLTM –Physical hydro model
 - Penalties for violation of all constraints (Overflow, bypass, min reservoir levels, «buffer» reservoirs)
 - Quantified individual water values
- EMPS
 - No penalties in EMPS for handling of detailed hydro constraints.
 - Relative individual water values
- The size of the shift, compared to the market price, tested in ngLTM is much larger than for the EMPS test.

- ngLTM
 - Want to avoid iterative based solutions because of computation time
 - Simulation
 - Allow for negative prices
 - Report production deviation
 - If negative prices , no transmission losses, ramping
 - Water values needs further investigation
- EMPS
 - Use the price shifting method

ProdRisk

Teknologi for et bedre samfunn

Testing with different price input

- Base case prices as shown below
- All values adjusted upward +2.0 EUR/MWh
- Also done tests with shift downward 2.0 EUR/MWh
 - Slightly modified ProdRisk

 \bigcirc

SINTEF

DUGE 1400.0

0.555

TIRHOM

TONSTAD

1.052

67.0

312.06

<u>120.0</u> 90.09 0.37

590.14

13232

100.1

951.64

829.03

13221 960.0

253.49

13231

Sira Kvina «snip», Shift prices upward

+ 2.0

Adjust penalties (-2) and endpoint water values (VVERD)

Prisrekke	K_KOST	Sluttmag (Mkr)
Base	-260.22	70.63
Pos2 (+2.00)	-430.62	120.73

Т	Forste uke i sesongen ; 1;		
	Siste uke i sesongen ; 104;		
1	Forventningsverdi objektfunksjon (kkr ; 18	4393.453;	
÷	Prisnivaa vannverdiene gjelder for re/kWh	; 1.445;	
i	Modul nr;Magasin navn;Maksimalt magasinvol	um (Mm3);	Startmagasin (Mm3);Restm
i	13232:DUGF: 1400.000: 840.000: 1008.810	: 2.626:	2.783: 5.166: 1.967:
5	13231 · T.T.RHOM · 312 060 · 187 236 · 250 871	· 2 563·	3 180: 3 602: 1 406:
I	12221, mongemap, $67,000$, $40,200$, $60,296$,	2.303,	250. 2 456. 1 045.
	13221,10NSIAD, 07.000, 40.200, 00.390,	2.330, 4	
1			
1	orste uke i sesongen ; 1;		
I	Siste uke i sesongen ; 104;		
1	Forventningsverdi objektfunksjon (kkr ; 30	5764.656;	
I	Prisnivaa vannverdiene gjelder for re/kWh	; 3.445;	
	Modul nr;Magasin navn;Maksimalt magasinvol	.um (Mm3);	Startmagasin (Mm3);Restm
1			
1	13232;DUGE; 1400.000; 840.000; 1021.456;	; 4.743;	5.050; 9.331; 1.967;
	13232;DUGE; 1400.000; 840.000; 1021.456; 13231:TJRHOM: 312.060; 187.236; 257.327;	; 4.743; ; 4.620;	5.050; 9.331; 1.967; 5.060: 6.494: 1.406:
	13232;DUGE; 1400.000; 840.000; 1021.456; 13231;TJRHOM; 312.060; 187.236; 257.327; 13221:TONSTAD: 67.000: 40.200: 62.142.	; 4.743; ; 4.620; 4 469; 4	5.050; 9.331; 1.967; 5.060; 6.494; 1.406; 469: 4.671: 1.045:
	13232;DUGE; 1400.000; 840.000; 1021.456; 13231;TJRHOM; 312.060; 187.236; 257.327; 13221;TONSTAD; 67.000; 40.200; 62.142;	; 4.743; ; 4.620; 4.469; 4	5.050; 9.331; 1.967; 5.060; 6.494; 1.406; .469; 4.671; 1.045;

Reservoir

Production

Base

- Shifting negative input prices upward works
 - Adjust dump load prices and overflow/bypass penalties
 - Result programs give wrong income, OK for comparison of cases
 - Difficult to use operationally with cut coupling to short-term model.
- Recommend solution need some model development
 - Allow for negative input prices
 - Use constant hydro efficiency for stage problems with negative prices

75 år med teknologi for et bedre samfunn

sintef.no/75

ProdRisk changes

#1 Allow for negenative prices

Putt_pris.f:

ÍG CŶRŖÍŞ ĽŢ 。 CŶRŖÍŞ 。

iğ ắđs ņắslřsîş îčỳtỹ îřêŋņ ţhêŋ CŶRŖÍŞ CŶRŖÍŞ DÍGAKŢ êĽşê CŶRŖÍŞ , CŶRŖÍŞ DÍGAKŢ êŋđîğ

Tiltak #2 Remove dumpload

Tiltak #3 Allow negative water values

prodrisk.CPAR straff.CPAR

; 'CFlomFram',2.0,'straff/energi', 'CFlomBak',2.0,'straff/energi', 'CForbFram',2.0,'straff/energi', 'CForbBak',2.0,'straff/energi',

#4 Adjust VVERD

- Adjust all water values