

About Aneo

Nordic renewable energy company

Headquartered in Trondheim, Norway 350+ employees

Energy as a Service

Aneo Mobility
EV charging solutions for housing associations and commercial customers

Aneo Retail
Delivers and manages
sustainable energy
infrastructure for retail

Energy management

7 TWh, 1.5 TWh of which is for third parties

3 Aneo Build
Delivers and manages
charging containers for
electrification of building
and construction

#Aneo Industry

17 hydropower plants

2.6 TWh

Wind and solar

Solar energy solutions for commercial property

ANEO

Introduction

- Aim of project: Improve bidding for hydropower in the day-ahead spot market
- Current solution:
 - SHOP with deterministic prices + multiple runs + manual adjustments
 - "Operator-determined bids"
- New solution:
 - SHOP with stochastic prices (i.e. SHARM)
 - Towards more automatic bid generation, which is necessary when markets move to shorter time resolution
 - "Stochastic-based bids"
- Parallel testing of these two alternatives for an extended period of time we'll show results and discuss our experiences so far

Development

- SHARM has been in development at SINTEF from 2009 and onwards
- SHARM incorporates uncertainty in prices and inflow into the successive linear programming algorithm in SHOP
- SHARM can output bids as a direct result from the optimization
- Main new constraint for bid generation is that production volumes must be nondecreasing for increasing prices
- SHARM also includes a reduction algorithm to reduce the resulting bid matrix into the size allowed by the market operator
- As far as we know, Aneo is the first company in the Nordic to do extensive testing for SHARM towards full implementation...

Adaptations to SHOP's bids

- We run SHOP with stochastic prices and the constraints that volumes needs to be increasing for increasing prices...
- ... but we create our own bids from the optimized production schedules.
- Better control bottom up
- · Avoid production at infeasible levels and ensure must-run production and flows
- Keep better track of information potentially lost when reducing the number of prices in the bid matrix
- Explainability

Case study

- A portfolio of 5 watercourses
 - Both simple systems and cascades
 - NO3
- Testing period:
 - 7 two-week periods (March-July)
 - Why? Reset water values at the end of each two-week period to not deviate too much from the real world
 - Spring = snow melting

Set-up

- What are we comparing:
 - Operator-determined bids

- Stochastic-based bids using in-house price scenarios
- Stochastic-based bids using ensemble price scenarios

Processes as shown are repeated every day in a rolling horizon framework.

Price input

- Two price scenario alternatives
 - In-house, drawn from a distribution of historical errors
 - Third-party based on ensemble weather forecasts
- Add extreme high and extreme low scenarios
 - By multiplying the main deterministic forecast
 - Low probability
- Scenario fan of 25 scenarios

Note, the plots are of the bidding day only. The scenarios used in optimization are 14 days long.

8

Benchmarking

- How are we evaluating?
 - Not the bids directly, but resulting generation schedules after market clearing
 - Every day of the rolling period:

Daily grand total = Revenue from production (market price times produced volume) - Start-up costs + Change in the value of water left in storage before and after the bidding day

Penalties for the whole SHOP period

Results - daily grand total

Cumulative by period

Missing values = we were not able to get reasonable results 11.12.2023

Results - daily grand total

Cumulative by period

Missing values = we were not able to get reasonable results 11.12.2023

Results - revenues

11.12.2023

Results - revenues

Results - revenues

Results — start-up costs

Cumulative by period

11.12.2023

Results – change in reservoir value

Results – change in reservoir value

Missing values = we were not able to get reasonable results

Results - change in reservoir value

Missing values = we were not able to get reasonable results

Results – change in reservoir value

Missing values = we were not able to get reasonable results

Results - Penalties

Results - Reservoir storage I

Results - Reservoir storage I

Results - Reservoir storage 2

Results - Reservoir storage 2

Conclusions so far

- Operator-determined bids performed best
 - Exemplified by handling of the minimum constraint for Reservoir 1
- Penalties what they represent and the value of the cost are more important in stochastic programming so extra care must be taken
- Inflow uncertainty is perhaps more important than price uncertainty? Depends on time
 of year and how constrained the watercourse is
- Underlying watercourse models needs to be more physically accurate (new SHOP objects such as river, tunnel, creek intake...) and data input needs higher quality (distributed inflow, penalty costs...)
- Our operators are highly experienced, and we are working on a new solution to let them interact more with the new bidding method ...
- Our "experiences with stochastic programming" will continue!

